
  

 

User’s Guide 
Daily GPP and Annual NPP (MOD17A2/A3) Products 

NASA Earth Observing System MODIS Land Algorithm 

 

 

 

 Steven W. Running  

Maosheng Zhao 

 
 

 
 

. 

Version 3.0 

For Collection 6 

 October 7, 2015 

  



MOD17 User’s Guide                                                                                       MODIS Land Team                           

Version 3.0, 10/7/2015                                                                               Page 2 of 28 

Synopsis 
 

The U.S. National Aeronautics and Space Administration (NASA) Earth Observing 

System (EOS) currently “produces a regular global estimate of daily gross primary productivity 

(GPP) and annual net primary productivity (NPP) of the entire terrestrial earth surface at 1-km 

spatial resolution, 110 million cells, each having GPP and NPP computed individually” (Running 

et al. 2004). This guide provides a description of the Gross and Net Primary Productivity 

algorithms (MOD17A2/A3) designed for the MODIS sensor aboard the Aqua and Terra 

platforms.   The resulting 8-day products, beginning in 2000 and continuing to the present, are 

archived at a NASA DAAC (Distributed Active Archive Center). This document is intended to 

provide both a broad overview and sufficient detail to allow for the successful use of the data in 

research and applications. 

 

1. The Algorithm, Background and Overview 

 
The derivation of a satellite estimate of terrestrial NPP has three theoretical components: 

(1) the idea that plant NPP is directly related to absorbed solar energy, (2) the theory that a 

connection exists between absorbed solar energy and satellite-derived spectral indices of 

vegetation, and (3) the assumption that there are biophysical reasons why the actual conversion 

efficiency of absorbed solar energy may be reduced below the theoretical potential value. We 

will briefly consider each of these components.  

 

1.1. Relating NDVI, APAR, GPP, and NPP  

 The original logic of John L. Monteith (1972) suggested that the NPP of well-watered 

and fertilized annual crop plants was linearly related to the amount of solar energy the plants 

absorbed over a growing season.  This logic combined the meteorological constraint of available 

sunlight reaching a site with the ecological constraint of the amount of leaf area absorbing the 

solar energy, while avoiding many complexities of canopy micrometeorology and carbon 

balance theory.   Measures of absorbed photosynthetically active radiation (APAR) integrate the 

geographic and seasonal variability of day length and potential incident radiation with daily 

cloud cover and aerosol attenuation of sunlight.  In addition, APAR implicitly quantifies the 

amount of leafy canopy that is displayed to absorb radiation (i.e., LAI).  A conversion efficiency, 

ε, translates APAR (in energy units) to final tissue growth, or NPP (in biomass). GPP is the 

initial daily total of photosynthesis, and daily net photosynthesis (PSNnet) subtracts leaf and fine-

root respiration over a 24-hour day.  NPP is the annual sum of daily net PSN minus the cost of 

growth and maintenance of living cells in permanent woody tissue.  Monteith’s logic, therefore, 

combines the meteorological constraint of available sunlight reaching a site with the ecological 

constraint of the amount of leaf-area capable of absorbing that solar energy.   Such a 

combination avoids many of the complexities of carbon balance theory. 

The radiation use efficiency logic requires an estimate of APAR, while the more typical 

application of remote sensing data is to provide an estimate of FPAR, the fraction of incident 

PAR absorbed by the surface. Sellers (1987) showed that APAR could be estimated from remote 

sensing.   Spectral vegetation indexes such as NDVI most directly quantify the fraction of 

photosynthetically active radiation (FPAR) that is absorbed (ranging from 0 to 1): FPAR = 

APAR/PAR ≈ NDVI.  APAR depends upon (1) the geographic and seasonal variability of day 
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length and potential incident radiation, as modified by cloud cover and aerosols, and (2) the 

amount and geometry of displayed leaf material. 

Measurements or estimates of PAR are therefore required in addition to the remotely 

sensed FPAR.  Fortunately, for studies over small spatial domains with in situ measurements of 

PAR at the surface, the derivation of APAR from satellite-derived FPAR is straightforward.   

Implementation of radiation use efficiency for the MODIS productivity algorithm depends on 

global daily estimates of PAR, ideally at the same spatial resolution as the remote sensing inputs, 

a challenging problem.  Currently, large-scale meteorological data are provided by the NASA 

GMAO, see details below.   

 

 

Figure 1.  Analysis of the geographic variation in climatic controls of terrestrial net primary 

production from water, temperature, and radiation limitations.  Data are from Nemani and 

colleagues (2003). 

 

1.2. Biophysical variability of   

The PAR conversion efficiency , varies widely with different vegetation types (Field et 

al. 1995, Prince and Goward 1995, Turner et al. 2003).  There are two principle sources of this 

variability.  First, with any vegetation, some photosynthesis is immediately used for maintenance 

respiration.  For the annual crop plants from the original theory of Monteith (1972), these 

respiration costs were minimal, so  was typically around 2 gC/MJ.  Respiration costs, however, 

increase with the size of perennial plants.  Hunt (1994) found published  values for woody 

vegetation were much lower, from about 0.2 to 1.5 gC/MJ, and hypothesized that this was the 

result of respiration from the 6-27% of living cells in the sapwood of woody stems (Waring and 

Running 2010).  

The second source of variability in  is attributed to suboptimal climatic conditions. To 

extrapolate Monteith’s original theory, designed for well-watered crops only during the growing 

season, to perennial plants living year around, certain severe climatic constraints must be 

recognized. Evergreen vegetation such as conifer trees or schlerophyllous shrubs absorb PAR all 

during the non-growing season, yet sub-freezing temperatures stop photosynthesis because leaf 

stomata are forced to close (Waring and Running 2010). As a global generalization, we truncate 

GPP on days when the air temperature is below 0 C. Additionally, high vapor pressure deficits, 

> 2000 Pa, have been shown to induce stomatal closure in many species. This level of daily 
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atmospheric water deficit is commonly reached in semi-arid regions of the world for much of the 

growing season.   So, our algorithm mimics this physiological control by progressively limiting 

daily GPP by reducing  when high vapor pressure deficits are computed from the surface 

meteorology.   We also assume nutrient constraints on vegetation growth to be quantified by 

limiting leaf area, rather than attempting to compute a constraint through . This assumption isn’t 

entirely accurate, as ranges of leaf nitrogen and photosynthetic capacity occur in all vegetation 

types (Reich et al. 1994, Reich et al. 1995, Turner et al. 2003). Spectral reflectances are 

somewhat sensitive to leaf chemistry, so the MODIS derived FPAR and LAI may represent some 

differences in leaf nitrogen content, but in an undetermined way. 

 To quantify these biome- and climate-induced ranges of , we simulated global NPP in 

advance with a complex ecosystem model, BIOME-BGC, and computed the  or conversion 

efficiency from APAR to final NPP.   This Biome Parameter Look-Up Table or BPLUT contains 

parameters for temperature and VPD limits, specific leaf area and respiration coefficients for 

representative vegetation in each biome type (Running et al. 2000, White et al. 2000). The 

BPLUT also defines biome differences in carbon storage and turnover rates.  

Since the relationships of temperature to the processes controlling GPP and those 

controlling autotrophic respiration have fundamentally different, it seems likely that the 

empirical parameterization of the influence of temperature on production efficiency would be 

more robust if the gross production and autotrophic respiration processes were separated. This is 

the approach employed in the MOD17 algorithm. 

 

1.3. The MOD17A2/MOD17A3 algorithm logic 
1.3a. Gross primary productivity. The core science of the algorithm is an application of 

the described radiation conversion efficiency concept to predictions of daily GPP, using satellite-

derived FPAR (from MOD15) and independent estimates of PAR and other surface 

meteorological fields (from DAO data, now renamed to GMAO/NASA), and the subsequent 

estimation of maintenance and growth respiration terms that are subtracted from GPP to arrive at 

annual NPP.  The maintenance respiration (MR) and growth respiration (GR) components arise 

from allometric relationships linking daily biomass and annual growth of plant tissues to 

satellite-derived estimates of leaf area index (LAI, MOD15).   These allometric relationships 

have been developed from an extensive literature review, and incorporate the same parameters as 

those used in the BIOME-BGC ecosystem process model (Running and Hunt 1993; White et al. 

2000). 

For any given pixel within the global set of 1-km land pixels, estimates of both GPP and 

NPP are calculated.   The calculations, summarized in Figure 1.1, are a series of steps, some 

(e.g., GPP) are calculated daily, and others (e.g., NPP) on an annual basis.  Calculations of daily 

photosynthesis (GPP) are shown in the upper flowchart of Figure 1.1.  An 8-day estimate of 

FPAR from MOD15 and daily estimated PAR from GMAO/NASA are multiplied to produce 

daily APAR for the pixel.  Based on the at-launch landcover product (MOD12), a set of biome-

specific radiation use efficiency parameters are extracted from the Biome Properties Look-Up 

Table (BPLUT) for each pixel.  There are five parameters used to calculate GPP, as shown in 

Table 1.1.  The actual biome-specific values associated with these parameters will be discussed 

in Section 3, and the entire BPLUT is shown in Table 2.1. 
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Figure 1.1. Flowcharts showing the logic behind the MOD17 Algorithm in calculating both  8-

day average GPP and annual NPP.   

 

Table 1.1. BPLUT parameters for daily gross primary productivity. 

Parameter Units Description 

max (kg C MJ-1) The maximum radiation conversion efficiency 

TMINmax (C) The daily minimum temperature at which  = max (for 

optimal VPD) 

TMINmin (C) The daily minimum temperature at which  = 0.0 (at any 

VPD) 

VPDmax (Pa) The daylight average vapor pressure deficit at which  

 = max (for optimal TMIN) 

VPDmin (Pa) The daylight average vapor pressure deficit at which  

 = 0.0 (at any TMIN) 
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The two parameters for TMIN and the two parameters for VPD are used to calculate the 

scalars that attenuate max to produce the final  (kg C MJ-1) used to predict GPP such that 

 

 = max * TMIN_scalar * VPD_scalar       (1.1) 

 

The attenuation scalars are simple linear ramp functions of daily TMIN and VPD, as illustrated 

for TMIN in Figure 1.2.  Values of TMIN and VPD are obtained from the GMAO/NASA 

dataset, while the value of max  is obtained from the BPLUT.   

 

 

 

Figure 1.2.  The TMIN and VPD attenuation scalars are simple linear ramp functions of daily 

TMIN and VPD.  

 

The resulting radiation use efficiency coefficient  is combined with estimates of APAR to 

calculate GPP (kg C day-1) as 

 

GPP =  * APAR          (1.2) 

 

where APAR = IPAR * FPAR.  IPAR (PAR incident on the vegetative surface) must be 

estimated from incident shortwave radiation (SWRad, provided in the GMAO/NASA dataset) as  

 

IPAR = (SWRad * 0.45)        (1.3) 

 

While GPP (Equation 1.2) is calculated on a daily basis, 8-day summations of GPP are created 

and these summations are available to the public.  The summations are named for the first day 

included in the 8-day period.   

 

  Each summation consists of 8 consecutive days of data, and there are 46 such summations 

created for each calendar year of data collection.  To obtain an estimate of daily GPP for this 8-

day period, it is necessary to divide the value obtained during a data download by eight for the 

first 45 values/year and by five (or six in a leap year) for the final period. 
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1.3b. Daily maintenance respiration and net photosynthesis.  Maintenance respiration 

costs (MR) for leaves and fine roots are summarized in the center flowchart of Figure 1.1 and are 

also calculated on a daily basis. There are five parameters within the BPLUT (Table 1.2) needed 

to calculate daily MR, which is dependent upon leaf or fine root mass, base MR at 20 C, and 

daily average temperature.  Leaf mass (kg) is calculated as  

 

Leaf_Mass = LAI / SLA        (1.4) 

 

where LAI, the leaf area index (m2 leaf m-2 ground area), is obtained from MOD15 and the 

specific leaf area (SLA, projected leaf area kg-1 leaf C) for a given pixel is obtained from the 

BPLUT. 

 

Table 1.2. BPLUT parameters for daily maintenance respiration. 

Parameter Units Description 

SLA (m2 kg C-1) Projected leaf area per unit mass of leaf carbon 

froot_leaf_ratio None Ratio of fine root carbon to leaf carbon 

leaf_mr_base (kg C kg C-1 day-1) Maintenance respiration per unit leaf carbon per 

day at 20 C 

froot_mr_base (kg C kg C-1 day-1) Maintenance respiration per unit fine root carbon 

per day at 20 C 

Q10_mr None Exponent shape parameter controlling respiration 

as a function of temperature 

 

Fine root mass (Fine_Root_Mass, kg) is then estimated as 

 

Fine_Root_Mass = Leaf_Mass * froot_leaf_ratio     (1.5) 

 

where froot_leaf_ratio is the ratio of fine root to leaf mass (unitless) as obtained from the 

BPLUT. 

 

Leaf maintenance respiration (Leaf_MR, kg C day-1) is calculated as 

 

Leaf_MR = Leaf_Mass * leaf_mr_base * Q10_mr [(Tavg - 20.0) / 10.0]   (1.6) 

 

where leaf_mr_base is the maintenance respiration of leaves (kg C kg C-1 day-1) as obtained from 

the BPLUT and Tavg is the average daily temperature (C) as estimated from the GMAO/NASA 

meteorological data. 

 

The maintenance respiration of the fine root mass (Froot_MR, kg C day-1) is calculated as  

 

Froot_MR = Fine_Root_Mass * froot_mr_base * Q10_mr [(Tavg - 20.0) / 10.0]  (1.7) 

 

where froot_mr_base is the maintenance respiration per unit of fine roots (kg C kg C-1 day-1) at 

20 C as obtained from the BPLUT. 
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Finally, PSNnet (kg C day-1) can be calculated from GPP (Equation 1.2) and maintenance 

respiration (Equations 1.6, 1.7) as 

 

PSNnet = GPP – Leaf_MR - Froot_MR      (1.8) 

 

As with GPP, PSNnet is summed over an 8-day period.   

 

   This product does not include the maintenance respiration associated with live wood 

(Livewood_MR), nor does it include growth respiration (GR). 

  

1.3c. Annual maintenance respiration.  Given a calendar year’s worth of outputs from 

the daily algorithm, the annual algorithm (Figure 1.1, lower flowchart) estimates annual NPP by 

first calculating live woody tissue maintenance respiration, and then estimating growth 

respiration costs for leaves, fine roots, and woody tissue using values defined in Table 1.3. 

Finally, these components are subtracted from the accumulated daily PSNnet to produce an 

estimate of annual NPP. 

 

Table 1.3. BPLUT parameters for annual maintenance and growth respiration. 

Parameter Units Description 

livewood_leaf_ratio None Ratio of live wood carbon to annual 

maximum leaf carbon 

livewood_mr_base (kg C kg C-1 day-1) Maintenance respiration per unit live 

wood carbon per day at 20 C 

leaf_longevity (yrs) Average leaf lifespan 

leaf_gr_base (kg C kg C-1) Respiration cost to grow a unit of leaf 

carbon 

froot_leaf_gr_ratio None Ratio of live wood to leaf annual growth 

respiration 

livewood_leaf_gr_ratio None Ratio of live wood to leaf annual growth 

respiration 

deadwood_leaf_gr_ratio None Ratio of dead wood to leaf annual growth 

respiration 

ann_turnover_proportion None Annual proportion of leaf turnover 

 

Annual maximum leaf mass, the maximum value of daily leaf mass, is the primary input 

for both live wood maintenance respiration (Livewood_MR) and whole-plant growth respiration 

(GR).  To account for Livewood_MR, it is assumed that the amount of live woody tissue is (1) 

constant throughout the year, and (2) related to annual maximum leaf mass. Once the live woody 

tissue mass has been determined, it can be used to estimate total annual livewood maintenance 

respiration. This approach relies on empirical studies relating the annual growth of leaves to the 

annual growth of other plant tissues. The compilation study by Cannell (1982) is an excellent 

resource, providing the basis for many of the relationships developed for this portion of the 

MOD17 algorithm and tested with the BIOME-BGC ecosystem processes model. Leaf longevity 

is required to estimate annual leaf growth for evergreen forests but is assumed to be less than one 

year for deciduous forests, which replace all foliage annually. This logic further assumes that 

there is no litterfall in deciduous forests until after maximum annual leaf mass has been attained.  
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The parameters relating annual leaf growth respiration costs to annual fine root, live wood, and 

dead wood growth respiration were calculated directly from similar parameters developed for the 

BIOME-BGC model (White et al. 2000). 

To create the annual NPP term, the MOD17 algorithm maintains a series of daily pixel-

wise terms to appropriately account for plant respiration.  To determine livewood maintenance 

respiration, the mass of livewood (Livewood_Mass, kg C) is calculated as  

 

Livewood_Mass = ann_leaf_mass_max * livewood_leaf_ratio   (1.9) 

 

where ann_leaf_mass_max is the annual maximum leaf mass for a given pixel (kg C) obtained 

from the daily Leaf_Mass calculation (Equation 1.4). The livewood_leaf_ratio is the ratio of live 

wood mass to leaf mass (unitless), and is obtained from the BPLUT.   

 

Once the mass of live wood has been determined, it is possible to calculate the associated 

maintenance respiration (Livewood_MR, kg C day-1) as 

 

Livewood_MR = Livewood_Mass * livewood_mr_base * annsum_mrindex (1.10) 

 

where livewood_mr_base (kg C kg C-1 day-1) is the maintenance respiration per unit of live wood 

carbon per day from the BPLUT and annsum_mrindex is the annual sum of the maintenance 

respiration term Q10_mr [(Tavg-20.0)/10.0]. 

 

Q10 is a constant value of 2.0 for fine root and live wood.  For leaf, we adopted a temperature 

acclimated Q10 equation proposed by Tjoelker et al. (2001), 

 

 Q10 = 3.22 – 0.046 * Tavg        (1.11) 

 

1.3d. Annual growth respiration and net primary productivity. The original 

algorithm calculated growth respiration (Rg) as a function of annual maximum LAI, and thus, the 

accuracy of Rg is determined by the accuracy of LAImax.  However, when LAI is greater than 3.0, 

surface reflectances have low sensitivity to LAI and the MODIS LAI is retrieved, in most cases, 

under reflectance saturation conditions (Myneni et al., 2002).  Generally, for forests, annual 

MODIS LAImax is set to be 6.8 for pixels classified as forests.  This logic can generate Rg values 

that are greater than NPP. Rg is the energy cost for constructing organic compounds fixed by 

photosynthesis, and it is empirically parameterized as 25% of NPP (Ryan 1991, Cannell et al. 

2000). To improve the algorithm, we replaced the LAImax dependent Rg with Rg = 0.25 * NPP, 

and annual MODIS NPP can be computed as 

 

NPP = GPP – Rm – Rg = GPP – Rm – 0.25*NPP                       (1.12) 

 

where Rm is annual plant maintenance respiration, and therefore, 

 

 NPP = 0.8 * (GPP – Rm)  when  GPP – Rm >=0, and 

 NPP = 0    when  GPP – Rm <  0     (1.13) 
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2.  Operational Details of MOD17 and Primary Uncertainties in the MOD17 

Logic 
  

A number of issues are important in implementing this algorithm for a global NPP. This 

section discusses some of the assumptions and special issues involved in development of the 

input variables, and their influence on the final NPP. 

 

2.1. Dependence on MODIS Land Cover Classification (MOD12Q1) 

One of the first MODIS products used in the MOD17 algorithm is the Land Cover 

Product, MOD12Q1. The importance of this product cannot be overstated as the MOD17 

algorithm relies heavily on land cover type through use of the BPLUT.  While the primary 

product created by MOD12 is a 17-class IGBP (International Geosphere-Biosphere Programme) 

landcover classification map (Running et al. 1994, Belward et al. 1999, Friedl et al. 2010), the 

MOD17 algorithm employs Boston University’s UMD classification scheme (Table 2.1).  More 

details on these and other schemes and their quality control considerations can be found at: 

https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mcd12q1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1. University of Maryland land cover classification system defined land covers from 

MOD12Q1 (land cover type 2 in MOD12Q1 dataset).  Evergreen Needleleaf Forest (ENF), 

Evergreen Broadleaf Forest (EBF), Deciduous Needleleaf Forest (DNF), Deciduous Broadleaf 

Forest (DBF), Mixed forests (MF), Closed Shrublands (CShrub), Open Shrublands (OShrub), 

Woody Savannas (WSavanna), Savannas (Savanna), grassland (Grass), and Croplands (Crop).  

Note that in this figure, we combined CShrub and OShrub into Shrub, and WSavanna and 

Savannas into Savanna. 

 

Given the global nature and daily time-step of the MODIS project, a broad classification 

scheme, which retains the essence of land cover, is necessary.  Since Collection 6 MODIS 

products are designed at a 0.5-km grid scale, it can be difficult to obtain accurate land cover in 

areas with complex vegetation, and misclassification can occur.  However, studies have 

suggested that the MODIS vegetation maps are accurate to within 65-80%, with higher 

https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mcd12q1
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accuracies for pixels that are largely homogeneous, and allow for consistent monitoring of the 

global land cover (Friedl et al. 2010). 

 

2.2. The BPLUT and constant biome properties 

Arguably, the most significant assumption made in the MOD17 logic is that biome-

specific physiological parameters do not vary with space or time.  These parameters are outlined 

in the BPLUT (Table 2.2) within the MOD17 algorithm. The BPLUT constitutes the 

physiological framework for controlling simulated carbon sequestration.  These biome-specific 

properties are not differentiated for different expressions of a given biome, nor are they varied at 

any time during the year.  In other words, a semi-desert grassland in Mongolia is treated the 

same as a tallgrass prairie in the Midwestern United States.  Likewise, a sparsely vegetated 

boreal evergreen needleleaf forest in Canada is functionally equivalent to its coastal temperate 

evergreen needleleaf forest counterpart. 

At NTSG we are exploring new logic that will allow both geospatial and seasonal 

variation in the εmax parameter (Madani et al. 2014, Reich 2012). We will be developing global 

implementation, and doing global testing of this in coming years. 

 

Table 2.1. The land cover types used in the MOD17 Algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

UMD Land Cover Types 

Class Value Class Description 

0 Water 

1 Evergreen Needleleaf Forest 

2 Evergreen Broadleaf Forest 

3 Deciduous Needleleaf Forest 

4 Deciduous Broadleaf Forest 

5 Mixed Forest 

6 Closed Shrubland 

7 Open Shrubland 

8 Woody Savanna 

9 Savanna 

10 Grassland 

12 Cropland 

13 Urban or Built-Up 

16 Barren or Sparsely Vegetated 

 

254 Unclassified 

255 Missing Data 



 

 

 

 

 

Table 2.2.  Biome-Property-Look-Up-Table (BPLUT) for MODIS GPP/NPP algorithm with NCEP-DOE reanalysis II and the 

Collection5 FPAR/LAI as inputs.  The full names for the University of Maryland land cover classification system (UMD_VEG_LC) in 

MOD12Q1 dataset (fieldname: Land_Cover_Type_2) are, Evergreen Needleleaf Forest (ENF), Evergreen Broadleaf Forest (EBF), 

Deciduous Needleleaf Forest (DNF), Deciduous Broadleaf Forest (DBF), Mixed forests (MF), Closed Shrublands (CShrub), Open 

Shrublands (OShrub), Woody Savannas (WSavanna), Savannas (Savanna), Grassland (Grass), and Croplands (Crop). 

 
UMD_VEG_LC ENF EBF DNF DBF MF CShrub OShrub WSavanna Savanna Grass Crop 

LUEmax 

(KgC/m2/d/MJ) 

0.000962 0.001268 0.001086 0.001165 0.001051 0.001281 0.000841 0.001239 0.001206 0.000860 0.001044 

Tmin_min (C) -8.00 -8.00 -8.00 -6.00 -7.00 -8.00 -8.00 -8.00 -8.00 -8.00 -8.00 

Tmin_max (C) 8.31 9.09 10.44 9.94 9.50 8.61 8.80 11.39 11.39 12.02 12.02 

VPD_min (Pa) 650.0 800.0 650.0 650.0 650.0 650.0 650.0 650.0 650.0 650.0 650.0 

VPD_max (Pa) 4600.0 3100.0 2300.0 1650.0 2400.0 4700.0 4800.0 3200.0 3100.0 5300.0 4300.0 

SLA (LAI/KgC) 14.1 25.9 15.5 21.8 21.5 9.0 11.5 27.4 27.1 37.5 30.4 

Q10* 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 

froot_leaf_ratio 1.2 1.1 1.7 1.1 1.1 1.0 1.3 1.8 1.8 2.6 2.0 

livewood_leaf_ratio 0.182 0.162 0.165 0.203 0.203 0.079 0.040 0.091 0.051 0.000 0.000 

leaf_mr_base 0.00604 0.00604 0.00815 0.00778 0.00778 0.00869 0.00519 0.00869 0.00869 0.0098 0.0098 

froot_mr_base 0.00519 0.00519 0.00519 0.00519 0.00519 0.00519 0.00519 0.00519 0.00519 0.00819 0.00819 

livewood_mr_base 0.00397 0.00397 0.00397 0.00371 0.00371 0.00436 0.00218 0.00312 0.00100 0.00000 0.00000 

 

*: The constant Q10 = 2.0 is applied to fine roots and live wood, while for leaves, a temperature acclimation Q10 value is used as 

described in Equation. 
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3. Leaf area index and fraction of absorbed photosynthetically active radiation   

As illustrated in Figure 2.1, the primary productivity at a pixel is dependent upon, among 

other things, LAI and FPAR, calculated with the MOD15 algorithm.  The LAI/FPAR product is 

an eight-day composite product 

(https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod15a2).   

The MOD15 compositing algorithm uses a simple selection rule whereby the maximum 

FPAR (across the eight days) is chosen for the inclusion as the output pixel.  The same day 

chosen to represent the FPAR measure also contributes the current pixel’s LAI value.  This 

means that although primary productivity is calculated daily, the MOD17 algorithm necessarily 

assumes that leaf area and FPAR do not vary during a given 8-day period.  Compositing of LAI 

and FPAR is required to provide an accurate depiction of global leaf area dynamics with 

consideration of spectral cloud contamination, particularly in the tropics. 

 

 
Figure 2.1. The linkages among MODIS land products. 

 

4. Additional Cloud/Aerosol Screening 

The 8-day MOD15A2 is still contaminated by clouds and/or aerosols in certain regions 

and times of year. As a result, in regions with higher frequencies of cloud cover, such as tropical 

rain forests, values of FPAR and LAI will be greatly reduced (Figure 2.1). To distinguish 

between good quality and contaminated data, MOD15A2 contains Quality Control (QC) fields, 

enabling users to determine which pixels are suitable for further analysis. The use of 

contaminated FPAR and LAI inputs will produce incorrect 8-day GPP and consequently, 

unreliable annual NPP.  

 

  The following additional cloud/aerosol screening is only applied to the improved MOD17 for 

the end of the year when the previous full yearly MOD15A2 is available. The screening 

processes for the improved MOD17 cannot be applied to NASA’s near real time MOD17 (Zhao 

et al. 2005).  

 

https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod15a2
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We solved this problem related to MOD15A2 inputs by removing poor quality FPAR and 

Lai data based on the QC label for every pixel. If any LAI/FPAR pixel did not meet the quality 

screening criteria, its value is determined through linear interpolation between the previous 

period’s value and that of the next period to pass the screening process. Figure 2.2 illustrates how 

this temporal filling approach is applied to a MODIS pixel in the Amazon region where higher 

frequency and persistence of cloud cover exists.  

 

 
Figure 2.2. An example on how temporal filling unreliable 8-day Collection 4 FPAR/LAI, and 

therefore improved 8-day GPP and PsnNet for one MODIS 1-km pixel located in Amazon basin 

(lat = -5.0, lon = -65.0) (from Zhao et al. 2005). 

 
As depicted in Figure 2.2, contaminated MOD15A2 was improved as the result of the 

filling process. However, there are some unusual 8-day periods with lower FPAR and LAI but 

good QC labels. In spite of this, we have to depend on QC label because this is the only source of 

quality control. Improved MOD15A2 leads to improvements of MOD17. Under most conditions, 

8-day composited GPP will increase because the temporal filling process generally acts to 

increase FPAR. 
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2.5. GMAO daily meteorological data 

The MOD17 algorithm computes productivity at a daily time step.  This is made possible 

by the daily global meteorological reanalysis data, including average and minimum air 

temperature, incident PAR and specific humidity, provided by the GMAO/NASA.  The current 

version of GMAO/NASA is hourly time step data set with about half-degree spatial resolution  

(0.5 Latitude degree by 0.67 Longitude degree) generated by GEOS-5 data assimilation system 

(Rienecker et al. 2008).  We aggregated hourly data into daily scale for daily meteorological 

inputs to MOD17.  For VPD, we are using daytime VPD not daily as photosynthesis is largely 

occurring during daytime.  Daytime is determined when hourly downward solar radiation is 

above zero.  Daytime VPD is the difference between daytime saturated vapor pressure estimated 

with daytime average air temperature and daily vapor pressure.  Daily vapor pressure is 

calculated with specific humidity and surface air pressure.   GMAO/NASA, like other global 

meteorological reanalyses, contains uncertainties, especially for regions with poor weather 

station coverage and small-scale convection processes which cannot be sufficiently depicted by 

coarse resolution meteorological data assimilation system.  Therefore, uncertainties in 

GMAO/NASA and subsequent estimated GPP/NPP are higher in tropics than non-tropical 

regions (Zhao et al. 2006). 

One major problem is the inconsistency in spatial resolution between half-degree 

GMAO/NASA meteorological data and 0.5-km MODIS Collection 6 pixel.  We solved the 

problem by spatially smoothing meteorological data to 0.5-km MODIS pixel level.  In the 

Collection 4 MOD17 system, all 1-km MODIS pixels located within the same “large” GMAO 

cell will use the same meteorological data without spatial variation.  In other words, each 1-km 

pixel retains the characteristics of the nearest neighbor GMAO cell.  As a result, a GMAO cell 

boundary line may appear in 1-km MOD17 images due to the relatively steep gradients between 

GMAO cells (Figure 2.3).  Such treatment, on a global or regional scale, may be acceptable, 

while at the local scale, especially for topographically diverse terrain or sites located at the 

relatively abrupt climatic gradient zones, it may introduce inaccurate climatic predictions for 

some productivity calculations.  

 For the problem arising from coarse spatial resolution daily GMAO data, we use spatial 

interpolation to enhance meteorological inputs. The four GMAO cells nearest to a given 1-km 

MODIS pixel are used in the interpolation algorithm. There are two reasons for choosing four 

GMAO cells per 1-km MODIS pixel: (1) this will not slow down the computational efficiency of 

creating MOD17, which is a global product, and (2) it is more reasonable to assume no elevation 

variation within four GMAO cells than more GMAO cells.  

Although there are many formulae for non-linear spatial interpolation, for simplicity, we 

use a cosine function because the output value can be constrained between 0 and 1. This function 

still could not effectively boundary lines in a MOD17 image, and thus we utilized a modified 

cosine function of the form: 

 

))/(*)2/((cos max

4 ddD ii             4,3,2,1i      (2.1) 

 

where, Di is the non-linear distance between the 1-km MODIS pixel and any one of four 

surrounding GMAO cells; di is the great-circle distance between the 1-km pixel and the same  

GMAO cell; and dmax is the great-circle distance between the two farthest GMAO cells of the 

four being used. This ensures that Di = 1 when di = 0, and Di = 0 when di = dmax.  
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Based on the non-linear distance (Di), the weighted value Wi can be expressed as 

 





4

1

/
i

iii DDW ,         (2.2) 

 

and therefore, for a given pixel, the corresponding smoothed value V  (i.e., interpolated Tmin, 

Tavg, VPD, SWrad) is 

 





4

1

)*(
i

ii VWV           (2.3) 

 

Theoretically, this GMAO spatial interpolation can improve the accuracy of 

meteorological data for each 1-km pixel because it is unrealistic for meteorological data to 

abruptly change from one side of GMAO boundary to the other, as in Collection 4.  Figure 2.3 

shows how this method works for MOD17A2/A3. The degree to which this interpolated GMAO 

will improve the accuracy of meteorological inputs, however, is largely dependent on the 

accuracy of GMAO data and the properties of local environmental conditions, such as elevation 

or weather patterns. To explore the above question, we use observed daily weather data from 

World Meteorological Organization (WMO) daily surface observation network (>5000 stations) 

to compare changes in Root Mean Squared Error (RMSE) and Correlation (COR) between the 

original and enhanced DAO data.   
 

 
Figure 2.3. Comparison of Collection 4 and Collection 4.5 MOD17A2 GPP (composite 

period 241) and MOD17A3 NPP for 2001. 

 

As a result of the smoothing process, on average, RMSE is reduced and COR increased 

for 72.9% and 84% of the WMO stations, respectively, when comparing original and enhanced 

DAO data to WMO observations for 2001 and 2002.  Clearly, the nonlinear spatial interpolation 

significantly improves GMAO inputs for most stations, although for a few stations, interpolated 



MOD17 User’s Guide                                                                                       MODIS Land Team                           

Version 3.0, 10/7/2015                                                                               Page 17 of 28 

GMAO accuracy may be reduced due to the inaccuracy of GMAO in these regions. (Zhao et al. 

2005, 2006) 

 

3.  Validation of MOD 17 GPP and NPP 
 

 The original strategy for validation of the MOD 17 GPP and NPP data can be found in 

Running et al. 1999.  This paper, published before the first MODIS launch, developed an overall 

plan for integrating MODIS Land data into global terrestrial monitoring.  This paper laid the 

foundation for the interaction between MODLAND and the eddy covariance fluxtower 

community, illustrating the mutual advantage of fluxtowers providing direct measurement of 

carbon and water fluxes, while MODIS land products provided a spatial extrapolation of the 

tower data.  It also laid out the conceptual basis for swapping out various components of the 

MOD17 algorithm in order to isolate points of uncertainty and inaccuracy, shown in Figure 3.1.   

 

 
Figure 3.1. The conceptual logic we are following for validation of MOD17 GPP with fluxtower 

data where tower meteorology, ground measured FPAR and more rigorous ecosystem models 

are sequentially substituted to evaluate sources of error and variability in MOD17 (based on 

Running et al. 1999).  
 

 
 Early validation papers using this strategy can be found in Turner et al. 2003, 2004, and 

2006, and Heinsch et al. 2006.  Google Scholar searches now identify hundreds of similar 

papers. The current organization of MODIS land product validation is here: 

 

http://landval.gsfc.nasa.gov/ 

 

http://landval.gsfc.nasa.gov/
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and specifics for MODIS NPP can be found here: 

 

http://landval.gsfc.nasa.gov/ProductStatus.php?ProductID=MOD17 

 

Recent reviews of MODIS NPP validated against other global NPP data can be found in Ito 

2011, and Pan et al 2014. 
 

4. Practical Details for downloading and using MOD17 Data 
 

All MODIS land data products are distributed to global users from the Land Processes 

Distributed Active Archive Center, found here:  

 

https://lpdaac.usgs.gov/ 

 

Specific details about the MODIS land products can be found here:  

 

https://lpdaac.usgs.gov/dataset_discovery/modis 

 

including details about sensor spectral bands,  spatial/temporal resolution, platform overpass 

timing, datafile naming conventions, tiling formats, processing levels and more.  

 

Specific details about the daily GPP product, including the datafiles, can be found here: 

 

https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod17a2 

 

Specific details about the annual NPP product can be found here:  

https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod17a3 

 

including processing notes, definitions and details of earlier product Versions and  Collections. 

  

The consistent improved global MOD17 from year to 2000 to the previous year can be 

downloaded at NTSG ftp site 

 

ftp://ftp.ntsg.umt.edu/pub/NPP_Science_2010/ 

 

 

 

 

 

 

 

 

 

 

 

 

http://landval.gsfc.nasa.gov/ProductStatus.php?ProductID=MOD17
https://lpdaac.usgs.gov/
https://lpdaac.usgs.gov/dataset_discovery/modis
https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod17a2
https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod17a3
ftp://ftp.ntsg.umt.edu/pub/NPP_Science_2010/
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5. New Science and Applications using MOD17 
 

Because NPP is the first tangible step in the transfer of carbon from the atmosphere to the 

biosphere, there have been a lot of applications of MOD 17 for global carbon cycle studies. 

While the net CO2 balance, NEE, of the land surface is of greatest interest to climate modelers, 

global NPP avoids the difficult problem of computing soil respiration and decomposition losses. 

So NPP can be more directly computed globally.  Some that NTSG has been part of are looking 

at time trends of global NPP (Nemani et al. 2003, Zhao and Running 2010). Bastos et al. 2012, 

and Poulter et al. 2014 explored the causes of the maximum annual global NPP ever recorded, in 

2011, and found that abundant rainfall in arid lands produced much of the anomaly.  Cleveland et 

al. 2013 explored the role of NPP in constraining complex biogeochemical cycles globally. And 

Running 2012, postulated that global NPP might be a carbon cycle planetary boundary, because 

very little change has occurred in global NPP in the 30+ years of record.  

Terrestrial NPP also has high value for evaluating human food, fibre and fuel issues.  

Haberl et al. 2014 has shown how MODIS NPP is used to define the Human Appropriation of 

NPP, or HANPP.  Abdi et al. 2014 showed how regional food supply/demand balances can be 

analyzed with MOD 17 data. The global capacity for bioenergy done by Smith et al. 2012 used 

MODIS NPP.  Ecosystem services and natural capital are attempts to give economic value to 

ecological processes. Tallis et al. 2012 illustrated how MOD17 NPP could be part of a carbon 

service calculation.  Mora et al. 2015 analyzed global food security and agricultural growing 

season potentials with MOD 17 NPP.  Allred et al. 2015 analyzed ecosystem plant production 

potential lost to industrial activity. 
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